0
返回出卷网首页
1. 如图,在▱ABCD中,点E,F在对角线AC上,且AE=CF.求证:
(1)
DE=BF;
(2)
四边形DEBF是平行四边形.
【考点】
三角形全等及其性质; 三角形全等的判定;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
综合题
普通
能力提升
真题演练
换一批
1. ∆ABC中,点D在直线AB上.点E在平面内,点F在BC的延长线上,∠E=∠BDC,AE=CD,∠EAB+∠DCF=180º.
(1)
如图①,求证AD+BC=BE;
(2)
如图②、图③,请分别写出线段AD,BC,BE之间的数量关系,不需要证明;
(3)
若BE⊥BC,tan∠BCD=
,CD=10,则AD=
.
综合题
困难
2. 如图1,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE、BF,交点为G.
(1)
求证:AE⊥BF;
(2)
将△BCF沿BF对折,得到△BPF(如图2),延长FP到BA的延长线于点Q,求sin∠BQP的值;
(3)
将△ABE绕点A逆时针方向旋转,使边AB正好落在AE上,得到△AHM(如图3),若AM和BF相交于点N,当正方形ABCD的面积为4时,求四边形GHMN的面积.
综合题
普通
3. 问题探究:
如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.
(1)
证明:AD=BE;
(2)
求∠AEB的度数.
(3)
如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.(Ⅰ)请求出∠AEB的度数;(Ⅱ)判断线段CM、AE、BE之间的数量关系,并说明理由.
综合题
困难
1. 如图,在平面直角坐标系xOy中,一次函数的图象与反比例函数y=
(k<0)的图象在第二象限交于A(﹣3,m),B(n,2)两点.
(1)
当m=1时,求一次函数的解析式;
(2)
若点E在x轴上,满足∠AEB=90°,且AE=2﹣m,求反比例函数的解析式.
综合题
普通
2. 四边形
ABCD
为矩形,
E
是
AB
延长线上的一点.
(1)
若
AC
=
EC
, 如图1,求证:四边形
BECD
为平行四边形;
(2)
若
AB
=
AD
, 点
F
是
AB
上的点,
AF
=
BE
,
EG
⊥
AC
于点
G
, 如图2,求证:△
DGF
是等腰直角三角形.
综合题
普通
3. 如图,将矩形纸片
ABCD
折叠(
AD
>
AB
),使
AB
落在
AD
上,
AE
为折痕,然后将矩形纸片展开铺在一个平面上,
E
点不动,将
BE
边折起,使点
B
落在
AE
上的点
G
处,连接
DE
, 若
DE
=
EF
,
CE
=2,则
AD
的长为
.
填空题
普通