1. 如图(1),在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣1,0),B(3,0),与y轴交于C(0,3),顶点为D(1,4),对称轴为DE.

(1) 抛物线的解析式是

(2) 如图(2),点P是AD上一个动点,P′是P关于DE的对称点,连接PE,过P′作P′F∥PE交x轴于F.设S四边形EPP′F=y,EF=x,求y关于x的函数关系式,并求y的最大值;

(3) 在(1)中的抛物线上是否存在点Q,使△BCQ成为以BC为直角边的直角三角形?若存在,求出Q的坐标;若不存在.请说明理由.

【考点】
二次函数的最值; 待定系数法求二次函数解析式; 平行四边形的判定与性质; 相似三角形的判定与性质; 二次函数-动态几何问题;
【答案】

您现在未登录,无法查看试题答案与解析。 登录
综合题 困难
能力提升
换一批