0 返回出卷网首页
1. 如图,点 在一条直线上, .

(1) 求证: ;
(2) 连接 ,求证:四边形 是平行四边形.
【考点】
三角形全等及其性质; 平行四边形的判定; 三角形全等的判定-SSS;
【答案】

您现在未登录,无法查看试题答案与解析。 登录
综合题 普通
能力提升
换一批
1. 如图,点A,F,C,D在同一直线上,AB=DE,AF=CD,BC=EF.

(1) 求证:∠ACB=∠DFE;
(2) 连接BF,CE,直接判断四边形BFEC的形状.
综合题 普通
2. 如图1,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE、BF,交点为G.

(1) 求证:AE⊥BF;

(2) 将△BCF沿BF对折,得到△BPF(如图2),延长FP到BA的延长线于点Q,求sin∠BQP的值;

(3) 将△ABE绕点A逆时针方向旋转,使边AB正好落在AE上,得到△AHM(如图3),若AM和BF相交于点N,当正方形ABCD的面积为4时,求四边形GHMN的面积.

综合题 普通
3. 问题探究:

如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.

(1) 证明:AD=BE;

(2) 求∠AEB的度数.

(3) 如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.(Ⅰ)请求出∠AEB的度数;(Ⅱ)判断线段CM、AE、BE之间的数量关系,并说明理由.

综合题 困难