操作:
操作一:对折正方形纸片 , 使与重合,得到折痕 , 把纸片展平;
操作二:在上选一点P,沿折叠,使点A落在正方形内部点M处,把纸片展平,连接 , 延长交于点Q,连接 .
①如图①,当点M在上时, ▲ .
②改变点P在上的位置(点P不与点A、D重合),如图②,判断与的数量关系,并说明理由.
定义:将宽与长的比值为(为正整数)的矩形称为阶奇妙矩形.
当时,这个矩形为1阶奇妙矩形,如图(1),这就是我们学习过的黄金矩形,它的宽()与长的比值是.
用正方形纸片进行如下操作(如图(2)):
第一步:对折正方形纸片,展开,折痕为 , 连接;
第二步:折叠纸片使落在上,点的对应点为点 , 展开,折痕为;
第三步:过点折叠纸片,使得点分别落在边上,展开,折痕为 .
试说明:矩形是1阶奇妙矩形.
用正方形纸片折叠出一个2阶奇妙矩形.要求:在图(3)中画出折叠示意图并作简要标注.
小明操作发现任一个阶奇妙矩形都可以通过折纸得到.他还发现:如图(4),点为正方形边上(不与端点重合)任意一点,连接 , 继续(2)中操作的第二步、第三步,四边形的周长与矩形的周长比值总是定值.请写出这个定值,并说明理由.
如图1,当tan∠PAB=1,c=4 时,a=,b=;
如图2,当∠PAB=30°,c=2时,a=,b=;
请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.
如图4,▱ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BE⊥CE于E,AF与BE相交点G,AD=3 ,AB=3,求AF的长.