1. 如图1为某公园的圆形喷水池,小玲学习了二次函数后,受到该图启发设计了一种新的喷水池,它的截面示意图如图2所示,为水池中心,喷头之间的距离为米,喷射水柱呈抛物线形,水柱距水池中心处达到最高,高度为 . 水池中心处有一个圆柱形蓄水池,其高米.

(1) 在图2中,以点为坐标原点,水平方向为轴建立直角坐标系,并求右边这条抛物线的函数解析式.
(2) 如图3,拟在圆柱形蓄水池中心处建一喷水装置 , 从点向四周喷射抛物线形水柱且满足以下四个条件:不能碰到图2中的水柱;落水点的间距为;水柱的最高点与点的高度差为;从点向四周喷射与图2中形状相同的抛物线形水柱.

①在建立的坐标系中,求落水点的坐标;

②求出喷水装置的高度.

【考点】
二次函数的实际应用-喷水问题;
【答案】

您现在未登录,无法查看试题答案与解析。 登录
解答题 困难
能力提升
真题演练
换一批