1. 若关于x的一元二次方程ax2+bx+c=0(a ≠0)的根均为整数,则称方程为“快乐方程”,通过计算发现,任何一个“快乐方程”的判别式b2-4ac一定为完全平方数,现规定F(a,b,c)=为该“快乐方程”的“快乐数”,例如“快乐方程”x2-3x-4=0,的两根均为整数,其“快乐数F(1,-3,-4)= , 若有另一个“快乐方程px2+qx+r=0(p≠0)的“快乐数"F(p,q,r), 且满足r·F(a,b,c) =c·F(p,q,r),则称F(a,b,c)与F(p,q,r)互为“开心数”.
(1) “快乐方程”x2-2x-3=0的“快乐数”为.
(2) 若关于x的一元二次方程x2-(2m-1)x+m2-2m-3=0(m为整数,且1<6)是“快乐方程”,求m的值,并求该方程的“快乐数”;
(3) 若关于x的一元二次方程x2-mx+m+1=0与x2-(n+2)x+2n=0(m、n均为整数)都是“快乐方程”,且其“快乐数”互为“开心数”,求n的值.
【考点】
一元二次方程的其他应用;
【答案】

您现在未登录,无法查看试题答案与解析。 登录
解答题 困难
能力提升
真题演练
换一批