0
返回出卷网首页
1. 如图,利用一面墙(墙的长度不限),用
长的篱笆围成一个矩形
场地,若垂直于墙的一边
长为
, 它的面积为
.
(1)
求矩形的面积
与
的函数关系式(要求写出自变量
的取值范围);
(2)
当
长为
时,求矩形场地的面积.
【考点】
一元二次方程的应用-几何问题;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
解答题
普通
能力提升
真题演练
换一批
1. 如图,公园原有一块长18
m
, 宽6
m
的矩形空地.后来从这块空地中划出不同区域种植不同品种的鲜花,中间铺设同样宽度的石子路将各区域间隔开.如果各区域鲜花面积和为85
m
2
, 求所铺设的石子路的宽度.
解答题
普通
2. 某校的分校区规划时决定在长为32米,宽为20米的长方形草坪中央修筑同样宽的两条互相垂直的小路,把长方形草坪分割成同样面积的四块小草坪,每块小草坪的面积为135平方米,问道路的宽是多少米?
解答题
普通
3. 如图,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15m
3
的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已知购买这种铁皮每平方米需20元钱,问张大叔购回这张矩形铁皮共花了多少元钱?
解答题
普通
1. 如图,小明同学用一张长11cm,宽7cm的矩形纸板制作一个底面积为
的无盖长方体纸盒,他将纸板的四个角各剪去一个同样大小的正方形,将四周向上折叠即可(损耗不计).设剪去的正方形边长为xcm,则可列出关于x的方程为
.
填空题
普通
2. “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为( )
A.
9
B.
6
C.
4
D.
3
单选题
普通
3. 某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为10m),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,已知栅栏的总长度为24m,设较小矩形的宽为xm(如图).
(1)
若矩形养殖场的总面积为36
,求此时x的值;
(2)
当x为多少时,矩形养殖场的总面积最大?最大值为多少?
综合题
普通