0
返回出卷网首页
1. 如图,
中,
,
,
平分
,
,
为
的中点,则
的长为
.
【考点】
三角形全等的判定-ASA; 三角形的中位线定理;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
填空题
普通
基础巩固
能力提升
变式训练
拓展培优
真题演练
换一批
1. 如图已知∠ABC=∠DEF,BE=FC,要证明△ABC≌△DEF,若以“ASA”为依据,还需要添加的条件
.
填空题
容易
2. 如图,A、B两点被池塘隔开,在 AB外选一点 C,连结 AC和 BC,并分别找出它们的中点 M、N.若测得MN=15m,则A、B两点的距离为
;
填空题
容易
3. 如图,在
中,点D、E分别是
、
的中点,以A为圆心,
为半径作圆弧交
于点F,若
,
, 则
的长为
.
填空题
容易
1. 如图,△ABC的周长为 28,点 D,E都在边BC 上,∠ABC 的平分线垂直于 AE,垂足为 Q,∠ACB的平分线垂直于 AD,垂足为 P,连结PQ.若 BC=10,则PQ的长是
.
填空题
普通
2. 如图,在
中,
平分
,垂足为点
D
, 点
M
是
的中点,如果
,那么
.
填空题
普通
3. 如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=10,MN=3,则AC的长为
填空题
普通
1. 如图,
的周长是24,点D、E在边
上,
的平分线垂直于
, 垂足为点Q,
的平分线垂直于
, 垂足为点P,若
, 则
的长为( )
A.
5
B.
4
C.
2
D.
3
单选题
普通
2. 如图,在
中,
,
,
、
分别是其角平分线和中线,过点
作
于F,交
于G,连接
, 则线段
的长为( )
A.
1
B.
2
C.
D.
7
单选题
普通
3. 如图,在
中,
是
的中点,
平分
于点
, 连接
, 若
, 求
的周长.
解答题
普通
1. 如图1,在
中,对角线
AC
与
BD
交于点
, 点
关于
AC
的对称点为点
, 连结
.
(1)
求证:
.
(2)
当
, 且
时.
①如图2,若
三点共线,求四边形
的周长.
②如图3,若
, 求四边形
的面积(直接写出答案).
综合题
困难
2. 如图,等腰 Rt△ABC 和等腰Rt△BDE有公共顶点 B,∠BAC=∠BDE=90°,连接CE,F是CE的中点,连接FA,FD.
(1)
如图①,若D,A,B 三点共线,求证:AF∥BE;
(2)
如图②,当∠ABD=45°,DF=4时,求AF的长.
解答题
困难
3. 等腰三角形AFG中AF=AG,且内接于圆O,D、E为边FG上两点(D在F、E之间),分别延长AD、AE交圆O于B、C两点(如图1),记∠BAF=α,∠AFG=β.
(1)
求∠ACB的大小(用α,β表示);
(2)
连接CF,交AB于H(如图2).若β=45°,且BC×EF=AE×CF.求证:∠AHC=2∠BAC;
(3)
在(2)的条件下,取CH中点M,连接OM、GM(如图3),若∠OGM=2α-45°,①求证:GM∥BC,GM=
BC②请直接写出
的值.
综合题
困难
1. 如图,在矩形
中,连接
,过点
C
作
平分线
的垂线,垂足为点
E
, 且交
于点
F
;过点
C
作
平分线
的垂线,垂足为点
H
, 且交
于点
G
, 连接
,若
,
,则线段
的长度为
.
填空题
普通
2. 由四个全等的直角三角形和一个小正方形组成的大正方形
如图所示.过点
作
的垂线交小正方形对角线
的延长线于点
,连结
,延长
交
于点
.若
,则
的值为( )
A.
B.
C.
D.
单选题
困难