1. 如图,抛物线 y=x2x﹣2与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,M是直线BC下方的抛物线上一动点.

(1) 求A、B、C三点的坐标;

(2) 连接MO、MC,并把△MOC沿CO翻折,得到四边形MO M′C,那么是否存在点M,使四边形MO M′C为菱形?若存在,求出此时点M的坐标;若不存在,说明理由;

(3) 当点M运动到什么位置时,四边形ABMC的面积最大,并求出此时M点的坐标和四边形ABMC的最大面积.

【考点】
二次函数图象的几何变换; 二次函数图象与坐标轴的交点问题; 二次函数的实际应用-几何问题;
【答案】

您现在未登录,无法查看试题答案与解析。 登录
综合题 困难
能力提升
真题演练
换一批