1. 如图1,在直角坐标系中,O是坐标原点,点A在y轴正半轴上,二次函数y=ax2+ x+c的图象F交x轴于B、C两点,交y轴于M点,其中B(﹣3,0),M(0,﹣1).已知AM=BC.

(1) 求二次函数的解析式;

(2) 证明:在抛物线F上存在点D,使A、B、C、D四点连接而成的四边形恰好是平行四边形,并请求出直线BD的解析式;

(3) 在(2)的条件下,设直线l过D且分别交直线BA、BC于不同的P、Q两点,AC、BD相交于N.

①若直线l⊥BD,如图1,试求 的值;

②若l为满足条件的任意直线.如图2.①中的结论还成立吗?若成立,证明你的猜想;若不成立,请举出反例.

【考点】
待定系数法求二次函数解析式; 平行四边形的判定与性质;
【答案】

您现在未登录,无法查看试题答案与解析。 登录
综合题 普通
能力提升
真题演练
换一批