如图,在矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAC,交BC于点E。作DF⊥AE于点H,分别交AB,AC于点F,G。
记△DGO的面积为S1 , △DBF的面积为S2 , 当 时,求 的值。
若DF交射线AB于点F,【性质探究】中的其余条件不变,连结EF。当△BEF的面积为矩形ABCD面积的 时,请直接写出tan∠BAE的值。
提出问题:如图1,当∠ADB=∠ACB=90°时,求证:AD=BC;
类比探究:如图2,当∠ADB≠∠ACB时,AD=BC是否还成立?并说明理由.
综合运用:如图3,当β=18°,BC=1,且AB⊥BC时,求AC的长.
[应用]如图②,在四边形ABCD中,∠ABC=∠ADC=90°,求证:四边形ABCD有外接圆.
连结BD,则∠ABD的度数为,BD的长度为
①试判断四边形ABCE是否为“双等腰四边形”,并说明理由.
②若∠AEC=90°,求∠ABC的度数.