0
返回出卷网首页
1. 如图,在菱形ABCD中,点E、F分别在BC,CD上,且CE=CF。
(1)
求证:△ABE≌△ADF.
(2)
若∠BAE=∠EAF=40°,求∠AEB的度数。
【考点】
菱形的性质; 三角形全等的判定-SAS;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
综合题
普通
能力提升
真题演练
换一批
1. 如图,已知菱形
ABCD
中,分别以
C
、
D
为圆心,大于
CD
的长为半径作弧,两弧分别相交于
M
、
N
两点,直线
MN
交
CD
于点
F
, 交对角线
AC
于点
E
, 连接
BE
、
DE
.
(1)
求证:
BE
=
CE
;
(2)
若∠
ABC
=72°,求∠
ABE
的度数.
综合题
普通
2. 如图,四边形ABCD为菱形,E为对角线AC上的一个动点(不与点A,C重合),连接DE并延长交射线AB于点F,连接BE.
(1)
求证:
;
(2)
求证:
.
综合题
普通
3. 如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=8,∠BAD=60°,点E从点A出发,沿AB以每秒2个单位长度的速度向终点B运动,当点E不与点A重合时,过点E作EF⊥AD于点F,作EG∥AD交AC于点G,过点G作GH⊥AD交AD(或AD的延长线)于点H,得到矩形EFHG,设点E运动的时间为t秒
(1)
求线段EF的长(用含t的代数式表示);
(2)
求点H与点D重合时t的值;
(3)
设矩形EFHG与菱形ABCD重叠部分图形的面积与S平方单位,求S与t之间的函数关系式;
(4)
矩形EFHG的对角线EH与FG相交于点O′,当OO′∥AD时,t的值为
;当OO′⊥AD时,t的值为
.
综合题
困难
1. 如图,四边形ABCD为菱形,E为对角线AC上的一个动点(不与点A,C重合),连接DE并延长交射线AB于点F,连接BE.
(1)
求证:
;
(2)
求证:
.
综合题
普通
2. 如图,四边形
是菱形,点E,F分别在
上,
. 求证
.
解答题
普通
3. 如图,四边形ABCD是平行四边形,延长DA,BC,使得AE=CF,连接BE,DF.
(1)
求证:
;
(2)
连接BD,∠1=30°,∠2=20°,当∠ABE=
°时,四边形BFDE是菱形.
综合题
普通