1. 某数学活动小组在一次活动中,对一个数学问题做了如下研究:

 

(1) (问题发现)如图①,在等边三角形ABC中,点M是BC边上任意一点,连接AM,以AM为边作等边三角形AMN,连接CN,则∠ABC和∠ACN的数量关系为
(2) (变式探究)如图②,在等腰三角形ABC中,AB=BC,点M是BC边上任意一点(不含端点B,C,连接AM,以AM为边作等腰三角形AMN,使∠AMN=∠ABC,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;
(3) (解决问题)如图③,在正方形ADBC中,点M为BC边上一点,以AM为边作正方形AMEF,点N为正方形AMEF的中心,连接CN,AB,AE,若正方形ADBC的边长为8,CN= ,直接写出正方形AMEF的边长.
【考点】
等腰三角形的性质; 等边三角形的性质; 正方形的性质; 相似三角形的判定与性质; 三角形全等的判定-SAS;
【答案】

您现在未登录,无法查看试题答案与解析。 登录
综合题 困难