0
返回出卷网首页
1. 如图,在平面直角坐标系中,点O为坐标原点.抛物线
交
轴于A、B两点,交
轴于点C,直线
经过B、C两点.
(1)
求抛物线的解析式;
(2)
过点C作直线
轴交抛物线于另一点D,过点D作
轴于点E,连接BD,求
的值.
【考点】
待定系数法求二次函数解析式; 锐角三角函数的定义;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
综合题
普通
能力提升
真题演练
换一批
1. 已知直线
与x轴交于点A.抛物线
经过点A,与x轴交于另一点B,点A在点B的左侧,且
.
(1)
求A,B两点的坐标;
(2)
抛物线的顶点为P,C是抛物线上一动点(P与C不重合),过点C作x轴垂线,垂足为D,过点A作x轴垂线与直线
交于点E,连接
,
.求证:
.
综合题
普通
2. 已知二次函数y
1
=x
2
+mx+n的图象经过点P(﹣3,1),对称轴是经过(﹣1,0)且平行于y轴的直线.
(1)
求m,n的值.
(2)
如图,一次函数y
2
=kx+b的图象经过点P,与x轴相交于点A,与二次函数的图象相交于另一点B,点B在点P的右侧,PA:PB=1:5,求一次函数的表达式.
(3)
直接写出y
1
>y
2
时x的取值范围.
综合题
普通
3. 已知二次函数y=ax
2
+bx+c的图象上部分点的坐标(x,y)满足下表:
x
…
﹣1
0
1
2
…
y
…
﹣4
﹣2
2
8
…
(1)
求这个二次函数的解析式;
(2)
用配方法求出这个二次函数图象的顶点坐标和对称轴.
综合题
普通
1. 如图,在平面直角坐标系中,抛物线y=﹣x
2
+bx+c经过点A(﹣1,0)和点C(0,4),交x轴正半轴于点B,连接AC,点E是线段OB上一动点(不与点O,B重合),以OE为边在x轴上方作正方形OEFG,连接FB,将线段FB绕点F逆时针旋转90°,得到线段FP,过点P作PH∥y轴,PH交抛物线于点H,设点E(a,0).
(1)
求抛物线的解析式.
(2)
若△AOC与△FEB相似,求a的值.
(3)
当PH=2时,求点P的坐标.
综合题
困难
2. 如图,抛物线y=ax
2
+bx+c与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).
(1)
求这条抛物线所对应的函数的表达式;
(2)
若点D为该抛物线上的一个动点,且在直线AC上方,求点D到直线AC的距离的最大值及此时点D的坐标;
(3)
点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为1:5两部分,求点P的坐标.
综合题
困难
3. 已知抛物线经过A(-1,0)、B(0、3)、 C(3,0)三点,O为坐标原点,抛物线交正方形OBDC的边BD于点E,点M为射线BD上一动点,连接OM ,交BC于点F
(1)
求抛物线的表达式;
(2)
求证:∠BOF=∠BDF :
(3)
是否存在点M使△MDF为等腰三角形?若不存在,请说明理由;若存在,求ME的长
综合题
困难