解:设另一个因式为 ( x + n) ,得x2 - 4x + m = ( x + 3) ( x + n)
则x2 - 4 x + m = x2 + (n + 3) x + 3n
∴
解得: n = -7, m = -21
∴ 另一个因式为 ( x - 7) , m 的值为-21 .
问题:仿照以上方法解答下面问题:
请你用(2)中得到等量关系解决下面问题:如果m﹣n=5,mn=14,求m+n的值.
解:设x2﹣4x=y
原式=(y﹣3)(y+1)+4(第一步)
=y2﹣2y+1 (第二步)
=(y﹣1)2 (第三步)
=(x2﹣4x﹣1)2(第四步)
回答下列问题:
我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图(1)可以用来解释 ,实际上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式分解.
如图(2),将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为 的大正方形,两块是边长都为 的小正方形,五块是长为 ,宽为 的全等小长方形,且 .(以上长度单位: )