1. 如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角扳的一边交CD于点F,另一边交CB的延长线于点G,

(1) 求证:EF=EG;
(2) 如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由:
(3) 如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a、BC=b,求 的值.
【考点】
矩形的性质; 相似三角形的判定与性质; 三角形全等的判定-ASA;
【答案】

您现在未登录,无法查看试题答案与解析。 登录
综合题 困难
能力提升
真题演练
换一批