0
返回出卷网首页
1. 如图1,放置的一副三角尺,将含45°角的三角尺斜边中点O为旋转中心,逆时针旋转30°得到如图2,连接OB、OD、AD.
(1)
求证:△AOB≌△AOD;
(2)
试判定四边形ABOD是什么四边形,并说明理由.
【考点】
全等三角形的判定与性质; 旋转的性质;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
综合题
普通
能力提升
真题演练
换一批
1. 如图,△OAB在平面直角坐标系中,∠BAO=90°,将△OAB绕点O顺时针旋转,使点B落在点D处,得到△ODE,过点B作平行于x轴的直线交OE于点F,交y轴于点N,直线FM交OB于点M。S
△OAB
=16,tan∠DOE=
。
(1)
求经过点M、F的反比例函数)y
1
=
和直线FM:y
2
=k
2
x+b的解析式;
(2)
过点M作MH⊥x轴,求五边形NFMHO的面积;
(3)
直接写出当
>k
2
x+b时x的值。
综合题
普通
2. 如图①,在△ABC中,∠ACB=90°,AC=BC,∠EAC=90°,点M为射线AE上任意一点(不与点A重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,直线NB分别交直线CM,射线AE于点F、D.
(1)
问题发现:直接写出∠NDE=
度;
(2)
拓展探究:试判断,如图②当∠EAC为钝角时,其他条件不变,∠NDE的大小有无变化?请给出证明.
(3)
如图③,若∠EAC=15°,BD=
,直线CM与AB交于点G,其他条件不变,请直接写出AC的长.
综合题
困难
3. 如图1:已知△ABC中,∠BAC=90°,AB=AC,在∠BAC内部作∠MAN=45°.AM、AN分别交BC于点M,N.
(1)
将△ABM绕点A逆时针旋转90°,使AB边与AC边重合,把旋转后点M的对应点记作点Q,得到ACQ,请在图1中画出△ACQ;(不写出画法)
(2)
在(1)中作图的基础上,连接NQ,
①求证“MN=NQ”;
②写出线段BM,MN和NC之间满足的数量关系,并简要说明理由.
(3)
线段GS,ST和TH之间满足的数量关系是
(4)
设DK=a,DE=b,求DP的值.(用a,b表示)
综合题
普通
1. 如图,点
,
分别在正方形
的边
,
上,且
,点
在射线
上(点
不与点
重合).将线段
绕点
顺时针旋转
得到线段
,过点
作
的垂线
,垂足为点
,交射线
于点
.
(1)
如图1,若点
是
的中点,点
在线段
上,线段
,
,
的数量关系为
.
(2)
如图2,若点
不是
的中点,点
在线段
上,判断(1)中的结论是否仍然成立.若成立,请写出证明过程;若不成立,请说明理由.
(3)
正方形
的边长为6,
,
,请直接写出线段
的长.
综合题
普通
2. 如图1,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H.
(1)
如图2,将△ADF绕点A顺时针旋转90°得到△ABG.
①求证:△AGE≌△AFE;
②若BE=2,DF=3,求AH的长.
(2)
如图3,连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND之间有什么数量关系?并说明理由.
综合题
困难
3. 如图,点M,
分别在正方形
的边
,
上,且
,把
绕点A顺时针旋转
得到
.
(1)
求证:
≌
.
(2)
若
,
,求正方形
的边长.
综合题
普通