0
返回出卷网首页
1. 如图,已知等边
,
于
,
,
为线段
上一点,且
,连接
,BF,
于
,连接
.
(1)
求证:
;
(2)
试说明
与
的位置关系和数量关系.
【考点】
等边三角形的性质; 三角形全等的判定-SAS;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
综合题
普通
能力提升
真题演练
换一批
1. 如图①,
是等边三角形,
是
边上的动点,以
为一边,向上作
,使
是等边三角形,连接
.
(1)
请猜想一下
与
的数量关系是
.
(2)
如图②,当点
在
的延长线上运动时,(1)中关系是否成立,若成立,请证明:若不成立,请说明理由;
(3)
点
在射线
的上运动,其余条件不变,当
时,请直接写出
的度数.
综合题
困难
2. 已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q.
(1)
求证:BE=AD;
(2)
求∠BPQ的度数;
(3)
若PQ=3,PE=1,求AD的长.
综合题
普通
3. 如图①,在等边
中,点D、E分别是BC、AB上的点,
, CE与AD交于点O.
(1)
填空:
度;
(2)
如图②,以AO为边作等边
, BF与CO相等吗?并说明理由;
(3)
如图③,若点G是AC的中点,连接BO、GO,判断BO与GO有什么数量关系?并说明理由.
综合题
困难
1. △ABC为等边三角形,AB=8,AD⊥BC于点D,E为线段AD上一点,AE=2
.以AE为边在直线AD右侧构造等边三角形AEF,连接CE,N为CE的中点.
(1)
如图1,EF与AC交于点G,连接NG,求线段NG的长;
(2)
如图2,将△AEF绕点A逆时针旋转,旋转角为α,M为线段EF的中点,连接DN,MN.当30°<α<120°时,猜想∠DNM的大小是否为定值,并证明你的结论;
(3)
连接BN,在△AEF绕点A逆时针旋转过程中,当线段BN最大时,请直接写出△ADN的面积.
综合题
困难
2. 如图,以
的三边为边在
上方分别作等边
、
、
.且点A在
内部.给出以下结论:
①四边形
是平行四边形;
②当
时,四边形
是矩形;
③当
时,四边形
是菱形;
④当
, 且
时,四边形
是正方形.
其中正确结论有
(填上所有正确结论的序号).
填空题
普通
3. 如图,等边
中,
, 点E为高
上的一动点,以
为边作等边
, 连接
,
, 则
,
的最小值为
.
填空题
困难