1. 如图,二次函数 的图象与一次函数 的图象交于点 (点 在右侧),与 轴交于点 ,点 的横坐标恰好为 .动点 同时从原点 出发,沿射线 分别以每秒 个单位长度运动,经过 秒后,以 为对角线作矩形 ,且矩形四边与坐标轴平行.

(1) 的值及 秒时点 的坐标;
(2) 当矩形 与抛物线有公共点时,求时间 的取值范围;
(3) 在位于 轴上方的抛物线图象上任取一点 ,作关于原点 的对称点为 ,当点 恰在抛物线上时,求 长度的最小值,并求此时点 的坐标.
【考点】
二次函数的最值; 勾股定理; 关于原点对称的点的坐标特征; 二次函数与一次函数的综合应用;
【答案】

您现在未登录,无法查看试题答案与解析。 登录
综合题 困难