0
返回出卷网首页
1. 如图,直角△ABC中,∠A为直角,AB=6,AC=8.点P,Q,R分别在AB,BC,CA边上同时开始作匀速运动,2秒后三个点同时停止运动,点P由点A出发以每秒3个单位的速度向点B运动,点Q由点B出发以每秒5个单位的速度向点C运动,点R由点C出发以每秒4个单位的速度向点A运动,在运动过程中:
(1)
求证:△APR,△BPQ,△CQR的面积相等;
(2)
求△PQR面积的最小值;
(3)
用t(秒)(0≤t≤2)表示运动时间,是否存在t,使∠PQR=90°?若存在,请直接写出t的值;若不存在,请说明理由.
【考点】
二次函数的最值; 锐角三角函数的定义;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
综合题
困难
能力提升
真题演练
换一批
1. 一个足球被从地面向上踢出,它距地面高度y(m)可以用二次函数y=﹣4.9x
2
+19.6x刻画,其中x(s)表示足球被踢出后经过的时间.
(1)
解方程﹣4.9x
2
+19.6x=0,并说明其根的实际意义;
(2)
求经过多长时间,足球到达它的最高点?最高点的高度是多少?
综合题
普通
2. 已知函数y=-x
2
+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).
(1)
求b,c的值.
(2)
当﹣4≤x≤0时,求y的最大值.
(3)
当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.
综合题
普通
3. 已知函数
为常数)的图象经过点
.
(1)
求
满足的关系式;
(2)
设该函数图象的顶点坐标是
, 当
的值变化时,求
关于
的函数解析式;
(3)
设该函数的图象不经过第三象限,当-5
时,函数的最大值与最小值之差为16,求
的值.
综合题
普通
1. 如图,平行四边形
中,
边上的高
, 点E为
边上的动点(不与B、C重合,过点E作直线
的垂线,垂足为F,连接
.
(1)
求证:
;
(2)
当点E为
的中点时,求
的长;
(3)
设
的面积为y,求y与x之间的函数关系式,并求当x为何值时,y有最大值,最大值是多少?
综合题
普通
2. 如图,抛物线y=ax
2
+bx+c与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).
(1)
求这条抛物线所对应的函数的表达式;
(2)
若点D为该抛物线上的一个动点,且在直线AC上方,求点D到直线AC的距离的最大值及此时点D的坐标;
(3)
点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为1:5两部分,求点P的坐标.
综合题
困难
3. 如图,在同一平面上,两块斜边相等的直角三角板Rt△ABC和Rt△ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm
(参考数据sin75°=
, sin15°=
)
(1)
AD=
(cm),DC=
(cm)
(2)
点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB上沿A→D,C→B方向运动,点N到AD的距离(用含x的式子表示)
(3)
在(2)的条件下,取DC中点P,连接MP,NP,设△PMN的面积为y(cm2),在整个运动过程中,△PMN的面积y存在最大值,请求出y的最大值.
综合题
困难