0
返回出卷网首页
1. 我市“共富工坊"问梅借力,某公司产品销售量得到大幅提升.为促进生产,公司提供了两种付给员工月报酬的方案,如图所示,员工可以任选一种方案与公司签订合同,看图解答下列问题:
(1)
直接写出员工生产多少件产品时,两种方案付给的报酬一样多;
(2)
求方案二y关于x的函数表达式;
(3)
如果你是劳务服务部门的工作人员,你如何指导员工根据自己的生产能力选择方案.
【考点】
一次函数的实际应用;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
综合题
普通
能力提升
真题演练
换一批
1. 已知甲,乙两地相距
, 一辆出租车从甲地出发往返于甲乙两地,一辆货车沿同一条公路从乙地前往甲地,两车同时出发,货车途经服务区时,停下来装完货物后,发现此时与出租车相距
, 货车继续出发
后与出租车相遇.出租车到达乙地后立即按原路返回,结果比货车早15分钟到达甲地.如图是两车距各自出发地的距离
与货车行驶时间
之间的函数图象,结合图象回答下列问题:
(1)
图中
的值是
;
(2)
求货车装完货物后驶往甲地的过程中,距其出发地的距离
与行驶时间
之间的函数关系式;
(3)
直接写出在出租车返回的行驶过程中,货车出发多长时间与出租车相距
.
综合题
普通
2. 某公司计划购买A,B两种型号的电脑,已知购买一台A型电脑需0.6万元,购买一台B型电脑需0.4万元,该公司准备投入资金y万元,全部用于购进35台这两种型号的电脑,设购进A型电脑x台.
(1)
求y关于x的函数解析式;
(2)
若购进B型电脑的数量不超过A型电脑数量的2倍,则该公司至少需要投入资金多少万元?
综合题
普通
3. 一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.
(1)
求y关于x的函数关系式;(不需要写定义域)
(2)
已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?
综合题
普通
1. 科研人员为了研究弹射器的某项性能,利用无人机测量小钢球竖直向上运动的相关数据.无人机上升到离地面30米处开始保持匀速竖直上升,此时,在地面用弹射器(高度不计)竖直向上弹射一个小钢球(忽路空气阻力),在1秒时,它们距离地面都是35米,在6秒时,它们距离地面的高度也相同.其中无人机离地面高度
(米)与小钢球运动时间
(秒)之间的函数关系如图所示;小钢球离地面高度
(米)与它的运动时间
(秒)之间的函数关系如图中抛物线所示.
(1)
直接写出
与
之间的函数关系式;
(2)
求出
与
之间的函数关系式;
(3)
小钢球弹射1秒后直至落地时,小钢球和无人机的高度差最大是多少米?
综合题
困难
2. 某品牌鞋子的长度y cm与鞋子的“码”数x之间满足一次函数关系,若22码鞋子的长度为16 cm,44码鞋子的长度为27 cm。则38码鞋子的长度为( )
A.
23 cm
B.
24 cm
C.
25 cm
D.
26 cm
单选题
普通
3. A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开
各自出发地
的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)
(1)
求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.
(2)
因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?
综合题
普通