定义:能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆.
探索发现:用大小不同的圆形纸片去覆盖一张三角形纸片,经过多次操作发现:
①锐角三角形(和直角三角形)的最小覆盖圆是其外接圆,
②钝角三角形的最小覆盖圆是以其最长边为直径的圆.
如图1,以斜边AB为直径作圆,刚好是可以把Rt△ABC覆盖的面积最小的圆,称之为该直角三角形的最小覆盖圆.
操作:如图1,分别将半圆的圆心角(取1、4、5、10)所对的弧三等分(要求:仅用圆规作图,不写作法,保留作图痕迹);
交流:当时,可以仅用圆规将半圆的圆心角所对的弧三等分吗?
探究:你认为当满足什么条件时,就可以仅用圆规将半圆的圆心角所对的弧三等分?说说你的理由.
有一个直径为60cm的圆形配件⊙O,如图2所示.现需在该配件上切割出一个四边形孔洞OABC,要求∠O=∠B=60°,OA=OC,并使切割出的四边形孔洞OABC的面积尽可能小.试问,是否存在符合要求的面积最小的四边形OABC?若存在,请求出四边形OABC面积的最小值及此时OA的长;若不存在,请说明理由.
如图,已知平面直角坐标系xOy中,点、、、 .