如图 1, 在 中, .
①求证: .
②用等式表示 与 之间的数量关系,并说明理由.
x/cm
0
0.5
1
1.5
2
2.5
3
3.5
4
y/cm
1.8
1.7
2.3
2.6
(说明:补全表格时相关数值保留一位小数)(参考数据:)
a、建立平面直角坐标系,如图2,描出剩余的点,并用光滑的曲线画出该函数的图象;
b、结合画出的函数图象,写出该函数的两条性质:
① ▲ ;
② ▲
【探究】如图②,△ABC是等边三角形,点D、E分别在边BA、CB的延长线上,且AD=BE,△ADC与△BEA还全等吗?如果全等,请证明:如果不全等,请说明理由.
【拓展】如图③,在△ABC中,AB=AC,∠1=∠2,点D、E分别在BA、FB的延长线上,且AD=BE,若AF= CF=2BE,S△ABF=6,求S△BCD的大小.
如图1,当tan∠PAB=1,c=4 时,a=,b=;
如图2,当∠PAB=30°,c=2时,a=,b=;
请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.
如图4,▱ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BE⊥CE于E,AF与BE相交点G,AD=3 ,AB=3,求AF的长.