如何把实心球掷得更远?
素材1
小林在练习投掷实心球,其示意图如图,第一次练习时,球从点A处被抛出,其路线是抛物线.点A距离地面1.6m,当球到OA的水平距离为1m时,达到最大高度为1.8m.
素材2
根据体育老师建议,第二次练习时,小林在正前方1m处(如图)架起距离地面高为245m的横线.球从点A处被抛出,恰好越过横线,测得投掷距离.OC=8m
问题解决
任务1
计算投掷距离
建立合适的直角坐标系,求素材1中的投掷距离OB.
任务2
探求高度变化
求素材2和素材1中球的最大高度的变化量
任务3
提出训练建议
为了把球掷得更远,请给小林提出一条合理的训练建议.
击球方案:
扣球
羽毛球的飞行高度y(m)与水平距离x(m)近似满足一次函数关系C1:y=﹣0.4x+b,当羽毛球的水平距离为1m时,飞行高度为2.4m.
吊球
羽毛球的飞行高度y(m)与水平距离x(m)近似满足二次函数关系C2 , 此时当羽毛球飞行的水平距离是1米时,达到最大高度3.2米.
高远球
羽毛球的飞行高度y(m)与水平距离x(m)近似满足二次函数关系C3:y=a(x﹣n)2+h,且飞行的最大高度在4.8m和5.8m之间.
探究:
②若选择吊球的方式,求羽毛球落地点到球网的距离;
乒乓球发球机的运动路线
素材一
如图1,某乒乓球台面是矩形,长为280cm,宽为150cm,球网商度为14cm.乒乓球发球机的出球口在桌面中线端点O正上方 25cm的点 P处.
素材二
假设每次发出的乒乓球都落在中线上,球的运动的高度y(cm)关于运动的水平距离∞(m)的函数图象是一条抛物线,且这条抛物线在与点P水平距离为100cm的点Q处达到最高高度,此时距桌面的高度为45cm,乒乓球落在桌面的点M处.以O为原点,桌面中线所在直线为∞轴,建立如图2所示的平面直角坐标系。
素材三
如图3,若乒乓球落在桌面上弹起后,在与点O的水平距离为300cm的点R处达到最高,设弹起后球达到最高时距离桌面的高度为h(cm).
任务一
研究乒乓球的
(1)求出从发球机发球后到落在桌面前,乒乓球运动轨迹的函数表达式(不要求飞行轨迹写出自变量的取值范围).
任务二
击球点的确定
(2)当h=20时,运动员小亮想在点R处把球沿直线擦网击打到点O,他能不能实现?请说明理由。
任务三
击球点的距离
(3)若h=40,且弹起后球飞行的高度在离桌面30cm至50cm时,小亮可以获得最佳击球效果,求击球点与发球机水平距离的取值范围。
竖直向上发射的小球的高度h(m)关于运动时间t(s)的函数表达式为h=at2+bt,其图象如图所示,若小球在发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是( )