0
返回出卷网首页
1. 如图,一次函数
的图象与坐标轴交于点A、B,二次函数
的图象过A、B两点.
(1)
求二次数的表达式
(2)
已知点
在对称轴上,且点
位于
轴上方,连接
, 若
, 求P的坐标
【考点】
待定系数法求二次函数解析式;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
解答题
普通
能力提升
真题演练
换一批
1. 已知抛物线
过点
和
, 求该抛物线的解析式.
解答题
普通
2. 在平面直角坐标系中,抛物线
与x轴交于
,
两点,与y轴交于点C,点D是该抛物线的顶点.
(1)
求抛物线的解析式和顶点 D的坐标;
(2)
在y轴上确定点M, 使
的周长最小,求出此时点 M 的坐标;
(3)
将抛物线在x轴下方的部分沿x轴翻折到x轴上方,图象其余部分不变,得到一个新图象,当新图象与直线
恰有三个公共点时,则b的值为
.
解答题
普通
3. 已知二次函数
(
为常数)的图象经过点
.求函数的表达式.
解答题
普通
1. 如图所示,抛物线与x轴交于A、B两点,与y轴交于点C,且
,
,
,抛物线的对称轴与直线BC交于点M,与x轴交于点N.
(1)
求抛物线的解析式;
(2)
若点P是对称轴上的一个动点,是否存在以P、C、M为顶点的三角形与
相似?若存在,求出点P的坐标,若不存在,请说明理由.
(3)
D为CO的中点,一个动点G从D点出发,先到达x轴上的点E,再走到抛物线对称轴上的点F,最后返回到点C.要使动点G走过的路程最短,请找出点E、F的位置,写出坐标,并求出最短路程.
(4)
点Q是抛物线上位于x轴上方的一点,点R在x轴上,是否存在以点Q为直角顶点的等腰
?若存在,求出点Q的坐标,若不存在,请说明理由.
综合题
困难
2. 如图,在平面直角坐标系中,抛物线y=﹣x
2
+bx+c经过点A(﹣1,0)和点C(0,4),交x轴正半轴于点B,连接AC,点E是线段OB上一动点(不与点O,B重合),以OE为边在x轴上方作正方形OEFG,连接FB,将线段FB绕点F逆时针旋转90°,得到线段FP,过点P作PH∥y轴,PH交抛物线于点H,设点E(a,0).
(1)
求抛物线的解析式.
(2)
若△AOC与△FEB相似,求a的值.
(3)
当PH=2时,求点P的坐标.
综合题
困难
3. 若抛物线
与
轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线
,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )
A.
B.
C.
D.
单选题
普通