如图2,在4×5的网格中,每个小正方形的长均为1,点A、B、C、D、E、F、G均在小正方形的顶点上,则点D是ABC关于点的勾股点;在点E、F、G三点中只有点是ABC关于点A的勾股点
如图3,E是矩形ABCD内一点,且点C是△ABE关于点A的勾股点,求证:CE=CD;
矩形ABCD中,AB=5,BC=6,E是矩形ABCD内一点,且点C是△ABE关于点A的勾股点,若△ADE是等腰三角形,求AE的长.
如图1,当tan∠PAB=1,c=4 时,a=,b=;
如图2,当∠PAB=30°,c=2时,a=,b=;
请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.
如图4,▱ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BE⊥CE于E,AF与BE相交点G,AD=3 ,AB=3,求AF的长.
①当PC=3时,求的值.
②小亮发现PC取不同值时,的值存在一定规律,请猜想该规律: ▲ .