1. 定义:若端点均在四边形边上的线段平分该四边形的面积,则我们称这条线段为该四边形的等积线。例:如图1,在ABCD中,连结AC,我们可以利用“夹在两条平行线间的垂线段相等”,结合“等底(同底)等高的两个三角形面积相等”来说明△ABC与△ADC的面积相等,即AC是ABCD的等积线.

(1) 请利用图1完成例的证明.
(2) 如图2,在四边形ABCD中,连结AC,BD,已知点D与BC上一点E的连线段DE是四边形ABCD的等积线,过点E作BD的平行线,交AC于点F,若AC=6,求 CF的长度.
(3) 如图3,在(2)的条件下,延长EF,交CD于点G.若FG=EF,请在图中找出一条不同于DE的四边形ABCD的等积线,并说明理由.
【考点】
平行线的性质; 三角形的面积; 平行四边形的性质;
【答案】

您现在未登录,无法查看试题答案与解析。 登录
综合题 困难