0
返回出卷网首页
1. 从反思中总结基本活动经验是一个重要的学习方法.例如,我们在全等学习中所总结的“一线三等角、K型全等”这一基本图形,可以使得我们在观察新问题的时候很自然地联想,借助已有经验,迅速解决问题.
(1)
如图1,在平面直角坐标系中,四边形OBCD是正方形,且D(0,2),点E是线段OB延长线上一点,M是线段OB上一动点(不包括点O、B),作MN⊥DM,垂足为M,且MN=DM.
设OM=a,请你利用基本活动经验直接写出点N的坐标
(用含a的代数式表示);
(2)
如果(1)的条件去掉“且MN=DM”,加上“交∠CBE的平分线与点N”,如图2,求证:MD = MN.如何获得问题的解决,不妨在OD上取一点G,连接MG,设法构造△MDG与△NMB全等,请你按此思路证明:MD = MN.
(3)
如图3,(2)的条件下请你继续探索:连接DN交BC于点F,连接FM,下列两个结论:①FM的长度不变;②MN平分∠FMB,请你指出正确的结论,并给出证明.
【考点】
三角形全等的判定; 等腰三角形的性质; 正方形的性质;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
综合题
困难
能力提升
真题演练
换一批
1. 如图,在正方形ABCD中,AB=BC=CD=AD,∠BAD=∠B=∠C=∠D=90°,点E、F分别在正方形ABCD的边DC、BC上,AG⊥EF且 AG=AB,垂足为G,则:
(1)
△ABF与△AGF全等吗?说明理由;
(2)
求∠EAF的度数;
(3)
若AG=4,△AEF的面积是6,求△CEF的面积.
综合题
普通
2.
如图1,在正方形ABCD中,P为对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F,连接CE.
(1)
求证:△PCE是等腰直角三角形;
(2)
如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,判断△PCE的形状,并说明理由.
综合题
困难
3. 如图,在△ABC中,AB=AC,AD是BC上的中线,AB的垂直平分线MN交AD于点O,连接BO并延长交AC于点E,AH⊥BE,垂足为H.
(1)
求证:△ABD≌△BAH;
(2)
若∠BAC=30°,AE=2,求BC的长;
(3)
如图,在△ABC中,AB=AC,∠A=40°,D是AC上的一点,且∠ABD=20°,若BC=6,请你直接写出AD的长.
综合题
普通
1. 综合与实践,【问题情境】:数学活动课上,老师出示了一个问题:如图1,在正方形ABCD中,E是BC的中点,
,EP与正方形的外角
的平分线交于P点.试猜想AE与EP的数量关系,并加以证明;
(1)
【思考尝试】同学们发现,取AB的中点F,连接EF可以解决这个问题.请在图1中补全图形,解答老师提出的问题.
(2)
【实践探究】希望小组受此问题启发,逆向思考这个题目,并提出新的问题:如图2,在正方形ABCD中,E为BC边上一动点(点E,B不重合),
是等腰直角三角形,
,连接CP,可以求出
的大小,请你思考并解答这个问题.
(3)
【拓展迁移】突击小组深入研究希望小组提出的这个问题,发现并提出新的探究点:如图3,在正方形ABCD中,E为BC边上一动点(点E,B不重合),
是等腰直角三角形,
,连接DP.知道正方形的边长时,可以求出
周长的最小值.当
时,请你求出
周长的最小值.
实践探究题
困难