①如图2,若n=1,求证: = .
②如图3,若M是BC的中点,直接写出tan∠BPQ的值.(用含n的式子表示)
①求sinB的值;
②画出△ABC关于直线l对称的△A1B1C1(A与A1 , B与B1 , C与C1相对应),连接AA1 , BB1 , 并计算梯形AA1B1B的面积.
如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:
② 线段DE与AC的位置关系是;
②设△BDC的面积为S1 , △AEC的面积为S2 , 则S1与S2的数量关系是.
当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.
已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF=S△BDE , 请直接写出相应的BF的长.
①求点D的坐标及该抛物线的解析式;
②连结CD,问:在抛物线上是否存在点P,使得∠POB与∠BCD互余?若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由;