1. 材料一:一个正整数x能写成x=a2﹣b2(a,b均为正整数,且a≠b),则称x为“雪松数”,a,b为x的一个平方差分解,在x的所有平方差分解中,若a2+b2最大,则称a,b为x的最佳平方差分解,此时F(x)=a2+b2

例如:24=72﹣52 , 24为雪松数,7和5为24的一个平方差分解,32=92﹣72 , 32=62﹣22 , 因为92+72>62+22 , 所以9和7为32的最佳平方差分解,F(32)=92+72

材料二:若一个四位正整数,它的千位数字与个位数字相同,百位数字与十位数字相同,但四个数字不全相同,则称这个四位数为“南麓数”.例如4334,5665均为“南麓数”.

根据材料回答:

(1) 请直接写出两个雪松数,并分别写出它们的一对平方差分解;
(2) 试证明10不是雪松数;
(3) 若一个数t既是“雪松数”又是“南麓数”,并且另一个“南麓数”的前两位数字组成的两位数与后两位数字组成的两位数恰好是t的一个平方差分解,请求出所有满足条件的数t中F(t)的最大值.
【考点】
因式分解的应用;
【答案】

您现在未登录,无法查看试题答案与解析。 登录
综合题 困难
能力提升
真题演练
换一批