1. 如图,在平面直角坐标系中,矩形OADB的顶点A,B的坐标分别为A(﹣6,0),B(0,4).过点C(﹣6,1)的双曲线y= (k≠0)与矩形OADB的边BD交于点E.


(1) 填空:OA=,k=,点E的坐标为
(2) 当1≤t≤6时,经过点M(t﹣1,﹣ t2+5t﹣ )与点N(﹣t﹣3,﹣ t2+3t﹣ )的直线交y轴于点F,点P是过M,N两点的抛物线y=﹣ x2+bx+c的顶点.

①当点P在双曲线y= 上时,求证:直线MN与双曲线y= 没有公共点;

②当抛物线y=﹣ x2+bx+c与矩形OADB有且只有三个公共点,求t的值;

③当点F和点P随着t的变化同时向上运动时,求t的取值范围,并求在运动过程中直线MN在四边形OAEB中扫过的面积.

【考点】
反比例函数与一次函数的交点问题; 二次函数与一次函数的综合应用; 二次函数-动态几何问题;
【答案】

您现在未登录,无法查看试题答案与解析。 登录
综合题 困难