0
返回出卷网首页
1. “儿童散学归来早,忙趁东风放纸鸢”
又到了放风筝的最佳时节.某校八年级
班的小明和小亮学习了“勾股定理”之后,为了测得风筝的垂直高度
如图
, 他们进行了如下操作:
测得水平距离
的长为
米;
根据手中剩余线的长度计算出风筝线
的长为
米;
牵线放风筝的小明的身高为
米.
(1)
求风筝的垂直高度
;
(2)
如果小明想风筝沿
方向下降
米,则他应该往回收线多少米?
【考点】
勾股定理的应用;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
解答题
普通
能力提升
真题演练
换一批
1. 如图,为了测量池塘的宽度DE,在池塘周围的平地上选择了A、B、C三点,且A、D、E、C四点在同一条直线上,∠C=90°,已测得AB=100m,BC=60m,AD=20m,EC=10m,求池塘的宽度DE.
解答题
普通
2. 滑梯的示意图如图所示,左边是楼梯,右边是滑道,立柱
,
垂直于地面
, 滑道
的长度与点A到点E的距离相等,滑梯高
, 且
, 求滑道
的长度.
解答题
普通
3. 一辆装满货物的卡车,高2.5米,宽1.6米,要开进上边是半圆,下边是长方形的桥洞,如图所示,已知半圆的直径为2
m
, 长方形的另一条边长是2.3
m
.
(1)
此卡车是否能通过桥洞?试说明你的理由.
(2)
为了适应车流量的增加,先把桥洞改为双行道,要使宽为1.2
m
, 高为2.8
m
的卡车能安全通过,那么此桥洞的宽至少增加到多少?
解答题
普通
1. 如图,A,B是海面上位于东西方向的两个观测点,有一艘海轮在C点处遇险发出求救信号,此时测得C点位于观测点A的北偏东45°方向上,同时位于观测点B的北偏西60°方向上,且测得C点与观测点A的距离为
海里.
(1)
求观测点B与C点之间的距离;
(2)
有一艘救援船位于观测点B的正南方向且与观测点B相距30海里的D点处,在接到海轮的求救信号后立即前往营救,其航行速度为42海里/小时,求救援船到达C点需要的最少时间.
综合题
普通
2. 如图,码头A,B分别在海岛O的北偏东45°和北偏东60°方向上,仓库C在海岛O的北偏东75°方向上,码头A,B均在仓库C的正西方向,码头B和仓库C的距离BC=50km,若将一批物资从仓库C用汽车运送到A、B两个码头中的一处,再用货船运送到海岛O,若汽车的行驶速度为50km/h,货船航行的速度为25km/h,问这批物资在哪个码头装船,最早运抵海岛O?(两个码头物资装船所用的时间相同,参考数据:
≈1.4,
≈1.7)
解答题
普通
3. 勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1,柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;…,若此类勾股数的勾为2m(m≥3,m为正整数),则其弦是
(结果用含m的式子表示).
填空题
普通