0
返回出卷网首页
1. 如图,在Rt
中,
, 点0是AB的中点,点
(不与点
重合是射线C0上的一个动点,且
.
(1)
若四边形ACBM是平行四边形,求OM的长;
(2)
当
为直角三角形时,求AM的长;
(3)
设
, 求
的最大值和最小值.
【考点】
一元二次方程根的判别式及应用; 勾股定理的应用; 直角三角形斜边上的中线; 解直角三角形—边角关系; 一元二次不等式;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
综合题
困难
能力提升
换一批
1. 已知AB是⊙O的直径,C是⊙O上的一点(不与点A,B重合),过点C作AB的垂线交⊙O于点D,垂足为E点.
(1)
如图1,当AE=4,BE=2时,求CD的长度;
(2)
如图2,连接AC,BD,点M为BD的中点.求证:ME⊥AC.
综合题
困难
2. 已知关于x的一元二次方程x
2
+2x+k﹣2=0有两个不相等的实数根.
(1)
求k的取值范围;
(2)
若k为正整数,且该方程的根都是整数,求k的值.
综合题
普通
3. 关于x的一元二次方程x
2
﹣(k+3)x+2k+2=0.
(1)
求证:方程总有两个实数根;
(2)
若方程有一根小于1,求k的取值范围.
综合题
普通