1. 如图

(1) 已知,如图①,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E,求证:DE=BD+CE.
(2) 如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意钝角,请问结论DE=BD+CE是否成立?若成立,请你给出证明:若不成立,请说明理由.
【考点】
三角形内角和定理; 全等三角形的判定与性质;
【答案】

您现在未登录,无法查看试题答案与解析。 登录
综合题 普通
能力提升
真题演练
换一批