0
返回出卷网首页
1. 如图,AD为△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC, FD=CD。
求证:
(1)
Rt△BDF≌Rt△ADC
(2)
BE⊥AC
【考点】
全等三角形的判定与性质;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
综合题
普通
能力提升
真题演练
换一批
1.
如图,在正方形ABCD中,点E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在正方形ABCD的内部,延长AF交CD于点G.
(1)
猜想并证明线段GF与GC的数量关系;
(2)
若将图1中的正方形改成矩形,其它条件不变,如图2,那么线段GF与GC之间的数量关系是否改变?请证明你的结论;
(3)
若将图1中的正方形改成平行四边形,其它条件不变,如图3,那么线段GF与GC之间的数量关系是否会改变?请证明你的结论.
综合题
普通
2. 如图,在正方形
ABCD
中,点
E
,
F
在对角线
BD
上,若再添加一个条件,就可证出
AE
=
CF
.
(1)
你添加的条件是
(2)
请你根据题目中的条件和你添加的条件证明
AE
=
CF
.
综合题
普通
3. 如图,点A是线段DE上一点,∠BAC=90°,AB=AC,BD⊥DE,CE⊥DE.
(1)
求证:DE=BD+CE.
(2)
如果是如图2这个图形,BD、CE、DE有什么数量关系?并证明.
综合题
普通
1. 如图,正方形
中,点
、
分别在边
,
上,
与
交于点
.若
,
,则
的长为( )
A.
B.
C.
D.
单选题
普通
2. 如图,点
,
分别在正方形
的边
,
上,且
,点
在射线
上(点
不与点
重合).将线段
绕点
顺时针旋转
得到线段
,过点
作
的垂线
,垂足为点
,交射线
于点
.
(1)
如图1,若点
是
的中点,点
在线段
上,线段
,
,
的数量关系为
.
(2)
如图2,若点
不是
的中点,点
在线段
上,判断(1)中的结论是否仍然成立.若成立,请写出证明过程;若不成立,请说明理由.
(3)
正方形
的边长为6,
,
,请直接写出线段
的长.
综合题
普通
3. 如图,在平面直角坐标系中,抛物线y=﹣x
2
+bx+c经过点A(﹣1,0)和点C(0,4),交x轴正半轴于点B,连接AC,点E是线段OB上一动点(不与点O,B重合),以OE为边在x轴上方作正方形OEFG,连接FB,将线段FB绕点F逆时针旋转90°,得到线段FP,过点P作PH∥y轴,PH交抛物线于点H,设点E(a,0).
(1)
求抛物线的解析式.
(2)
若△AOC与△FEB相似,求a的值.
(3)
当PH=2时,求点P的坐标.
综合题
困难