0
返回出卷网首页
1. 如图,抛物线y=-x
2
+mx+2m
2
(m>0)与x轴交于A、B两点,点A在点B的左边,C是抛物线上一个动点(点C与点A、B不重合),D是OC的中点,连接BD并延长,交AC于点E.
(1)
用含m的代数式表示点A、B的坐标;
(2)
求证:
;
(3)
若点C、点A到y轴的距离相等,且s
△CDE
=1.6时,求抛物线和直线BE的解析式.
【考点】
待定系数法求一次函数解析式; 相似三角形的判定与性质;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
综合题
普通
能力提升
真题演练
换一批
1. 如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y=
相交于点A(m,6)和点B(﹣3,n),直线AB与y轴交于点C.
(1)
求直线AB的表达式;
(2)
求AC:CB的值.
综合题
普通
2. 如图,一次函数y=kx+b(k≠0)的图象与x轴,y轴分别交于A(﹣9,0),B(0,6)两点,过点C(2,0)作直线l与BC垂直,点E在直线l位于x轴上方的部分.
(1)
求一次函数y=kx+b(k≠0)的表达式;
(2)
若△ACE的面积为11,求点E的坐标;
(3)
当∠CBE=∠ABO时,点E的坐标为
.
综合题
普通
3. 如图,
,
,
轴,与直线
交于点
,
轴于点
,
是折线
上一动点.设过点
,
的直线为
.
(1)
点
的坐标为
;
(2)
若直线
所在的函数随
的增大而减少,则
的取值范围是
;
(3)
若动点
在
上运动,
与
相似时,求此时直线
的解析式.
综合题
困难
1. 如图,已知二次函数
的图象经过点A(4,0),与y轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.
(1)
求a的值和直线AB的解析式;
(2)
过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S
1
, S
2
, 若S
1
=4S
2
, 求m的值;
(3)
点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱
周长取最大值时,求点G的坐标.
综合题
困难
2. 如图,在平面直角坐标系xOy中,一次函数的图象与反比例函数y=
(k<0)的图象在第二象限交于A(﹣3,m),B(n,2)两点.
(1)
当m=1时,求一次函数的解析式;
(2)
若点E在x轴上,满足∠AEB=90°,且AE=2﹣m,求反比例函数的解析式.
综合题
普通
3. 在平面直角坐标系中,点O为坐标原点,抛物线
经过点
, 点
, 与y轴交于点C.
(1)
求a,b的值;
(2)
如图1,点D在该抛物线上,点D的横坐标为
, 过点D向y轴作垂线,垂足为点E.点P为y轴负半轴上的一个动点,连接
、设点P的纵坐标为t,
的面积为S,求S关于t的函数解析式(不要求写出自变量t的取值范围);
(3)
如图2,在(2)的条件下,连接
, 点F在
上,过点F向y轴作垂线,垂足为点H,连接
交y轴于点G,点G为
的中点,过点A作y轴的平行线与过点P所作的x轴的平行线相交于点N,连接
,
, 延长
交
于点M,点R在
上,连接
, 若
,
, 求直线
的解析式.
综合题
困难