1. 已知四边形ABCD是边长为4的正方形,以AB为直径在正方形内作半圆,P是半圆上的动点(不与点A、B重合),连接PA、PB、PC、PD.

(1) 如图①,当PA的长度等于时,∠PAD=60°;当PA的长度等于时,△PAD是等腰三角形;
(2) 如图②,以AB边所在直线为x轴、AD边所在直线为y轴,建立如图所示的直角坐标系(点A即为原点O),把△PAD、△PAB、△PBC的面积分别记为S1、S2、S3 . 设P点坐标为(a,b),试求2S1S3﹣S22的最大值,并求出此时a、b的值.
【考点】
二次函数的最值; 正方形的性质; 圆周角定理; 相似三角形的判定与性质; 解直角三角形;
【答案】

您现在未登录,无法查看试题答案与解析。 登录
综合题 普通