0
返回出卷网首页
1. 如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.
(1)
(问题解决)
如图1,若点D在边BC上,求证:CE+CF=CD;
(2)
(类比探究)
如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.
【考点】
平行线的性质; 三角形全等及其性质; 三角形全等的判定; 等边三角形的性质;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
综合题
困难
能力提升
换一批
1. ∆ABC中,点D在直线AB上.点E在平面内,点F在BC的延长线上,∠E=∠BDC,AE=CD,∠EAB+∠DCF=180º.
(1)
如图①,求证AD+BC=BE;
(2)
如图②、图③,请分别写出线段AD,BC,BE之间的数量关系,不需要证明;
(3)
若BE⊥BC,tan∠BCD=
,CD=10,则AD=
.
综合题
困难
2. 如图,在▱ABCD中,点E,F在对角线AC上,且AE=CF.求证:
(1)
DE=BF;
(2)
四边形DEBF是平行四边形.
综合题
普通
3. 如图,等边三角形ABC中,点D、E、F、分别为边AB,AC,BC的中点,M为直线BC动点,△DMN为等边三角形
(1)
如图1,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?
(2)
如图2,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立请说明理由;
(3)
若点M在点C右侧时,请你在图3中画出相应的图形,并判断(1)的结论是否仍然成立?若成立,请直接写出结论,若不成立请说明理由.
综合题
普通