1. 如图1,在平面直角坐标系xOy中,点A的坐标为(0,1),取一点B(b,0),连接AB,做线段AB的垂直平分线l1 , 过点B作x轴的垂线l2 , 记l1 , l2的交点为P.

(1) 当b=3时,在图1中补全图形(尺规作图,不写作法,保留作图痕迹);

(2) 小慧多次取不同数值b,得出相应的点P,并把这些点用平滑的曲线连接起来发现:这些点P竟然在一条曲线L上!

①设点P的坐标为(x,y),试求y与x之间的关系式,并指出曲线L是哪种曲线;

②设点P到x轴,y轴的距离分别是d1 , d2 , 求d1+d2的范围,当d1+d2=8时,求点P的坐标;

③将曲线L在直线y=2下方的部分沿直线y=2向上翻折,得到一条“W”形状的新曲线,若直线y=kx+3与这条“W”形状的新曲线有4个交点,直接写出k的取值范围.

【考点】
勾股定理; 二次函数与一次函数的综合应用;
【答案】

您现在未登录,无法查看试题答案与解析。 登录
综合题 困难
能力提升
真题演练
换一批