0
返回出卷网首页
1. 已知某二次函数
y
=
x
2
+2
x
+
c
的图象经过点(2,5).
(1)
求该二次函数的解析式及其顶点坐标;
(2)
若该抛物线向上平移2个单位后得到新抛物线,判断点(﹣1,2)是否在新抛物线上.
【考点】
二次函数图象的几何变换; 待定系数法求二次函数解析式; 二次函数y=ax²+bx+c与二次函数y=a(x-h)²+k的转化;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
综合题
普通
能力提升
真题演练
换一批
1. 已知抛物线y=ax
2
+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,-3).
(1)
求抛物线的解析式和顶点坐标;
(2)
请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=-x上,并写出平移后抛物线的解析式.
综合题
普通
2. 如图,抛物线y=ax
2
-5x+4a与x轴相交于点A,B, 且过点C(5,4).
(1)
求a的值和该抛物线顶点P的坐标;
(2)
请你设计一种平移的方法,使平移后抛物线经过原点,并写出平移后抛物线的解析式.
综合题
普通
3. 在一次足球训练中,小明从球门正前方
的A处射门,球射向球门的路线呈抛物线,当球飞行的水平距离为
时,球达到最高点,此时球离地面
. 已知球门高
为
, 现以O为原点,建立如图所示直角坐标系,并设抛物线的表达式为
, 其中
是足球距球门的水平距离,
是足球距地面的高度.
(1)
求抛物线的表达式;
(2)
通过计算判断球能否进球门;
(3)
若抛物线的形状、最大高度均保持不变,且抛物线恰好经过点O正上方
处,则该抛物线应向右平移几个单位?
综合题
普通
1. 已知O为坐标原点,抛物线y
1
=ax
2
+bx+c(a≠0)与x轴相交于点A(x
1
, 0),B(x
2
, 0),与y轴交于点C,且O,C两点间的距离为3,x
1
•x
2
<0,|x
1
|+|x
2
|=4,点A,C在直线y
2
=﹣3x+t上.
(1)
求点C的坐标
(2)
当y
1
随着x的增大而增大时,求自变量x的取值范围;
(3)
将抛物线y
1
向左平移n(n>0)个单位,记平移后y随着x的增大而增大的部分为P,直线y
2
向下平移n个单位,当平移后的直线与P有公共点时,求2n
2
﹣5n的最小值.
综合题
困难