BD=2,OB=2.设直线AC的解析式为y=kx+b。
①点A的坐标是;
②不等式kx+b> (x>0)的解集是。
例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠PCB=∠ABC,则△BCP∽△ABC,故点P是△ABC的自相似点.
请你运用所学知识,结合上述材料,解决下列问题:
在平面直角坐标系中,点M是曲线y= (x>0)上的任意一点,点N是x轴正半轴上的任意一点.
小明根据学习函数的经验,对函数y= x与y= ,当k>0时的图象性质进行了探究.
下面是小明的探究过程:
①设直线PA交x轴于点M,直线PB交x轴于点N.求证:PM=PN.
证明过程如下,设P(m, ),直线PA的解析式为y=ax+b(a≠0).
则 ,
解得
∴直线PA的解析式为
请你把上面的解答过程补充完整,并完成剩余的证明.
②当P点坐标为(1,k)(k≠1)时,判断△PAB的形状,并用k表示出△PAB的面积.
①求n的值;
②分别写出平移后的两个图象C′和l′对应的函数关系式;
③直接写出不等式 的解集.