“手拉手”模型是初中几何图形的一种全等变形的重要模型,可以借助旋转和全等形的相关知识结合勾股定理等,来解决有关线段的长、角的度数等问题,在学习和生活中应用广泛,有着十分重要的地位和作用.
某校数学活动小组进行了有关旋转的系列探究:
如图①,已知 和 均是等腰直角三角形, ,且 , ,易证: , .
如图②,将图①中 绕点A逆时针旋转 ,连接 、 ,并延长 分别与 、 相交于点 、 ,求证: , .
如图③,将图①中 绕点 逆时针旋转 ,使 与 重合,其他条件不变,若 , ,则 , .
如图④,将图①中 绕点 逆时针旋转 ,连接 、 ,若 , , ,则 , .(提示:求 时,可过点 作 于点 )
【探究】如图②,△ABC是等边三角形,点D、E分别在边BA、CB的延长线上,且AD=BE,△ADC与△BEA还全等吗?如果全等,请证明:如果不全等,请说明理由.
【拓展】如图③,在△ABC中,AB=AC,∠1=∠2,点D、E分别在BA、FB的延长线上,且AD=BE,若AF= CF=2BE,S△ABF=6,求S△BCD的大小.
[应用]如图②,在四边形ABCD中,∠ABC=∠ADC=90°,求证:四边形ABCD有外接圆.
连结BD,则∠ABD的度数为,BD的长度为
①若 , 求的长;
②在满足①的条件下,若 , 求证:;