如图1,圆与大正方形的各边都相切,小正方形是圆的内接正方形,那么大正方形面积是小正方形面积的几倍?小昕将小正方形绕圆心旋转(如图2),这时候就容易发现大正方形面积是小正方形面积的 ▲ 倍.由此可见,图形变化是解决问题的有效策略:
如图3,图①是一个对角线互相垂直的四边形,四边之间存在某种数量关系.小昕按所示步骤进行操作,并将最终图形抽像成图4.请你结合整个变化过程,直接写出图4中以矩形内一点为端点的四条线段之间的数量关系;
如图5,在图3中“④”的基础上,小昕将绕点逆时针旋转,他发现旋转过程中存在最大值.若 , 当最大时,求AD的长;
将几何图形按照某种法则或规则变换成另一种几何图形的过程叫做几何变换.旋转变换是几何变换的一种基本模型.经过旋转,往往能使图形的几何性质明白显现.题设和结论中的元素由分散变为集中,相互之间的关系清楚明了,从而将求解问题灵活转化.
问题提出:如图1,是边长为1的等边三角形,P为内部一点,连接、、 , 求的最小值.
方法分析:通过转化,把由三角形内一点发出的三条线段(星型线)转化为两定点之间的折线(化星为折),再利用“两点之间线段最短”求最小值(化折为直).
问题解决:如图2,将绕点逆时针旋转至 , 连接 , 记与交于点 , 易知 . 由 , 可知为正三角形,有 .
故 . 因此,当共线时,有最小值是 .
学以致用: