⑴作⊙O的直径AB;
⑵以点A为圆心,AO长为半径画弧,交⊙O于C,D两点;
⑶连接CD交AB于点E,连接AC,BC.
根据以上作图过程及所作图形,有下面三个推断:
①CE=DE; ②BE=3AE; ③BC=2CE.
所有正确推断的序号是.
特别地,若这样的等边三角形有且只有一个,则称点是线段的“强关联点”.
在平面直角坐标系中,点的坐标为 .
①直接写出点的坐标;
②动点在第四象限且 , 记 . 若存在点 , 使得点是线段的“关联点”,也是的“关联点”,直接写出及线段的取值范围.
解决问题:
①证明: .
②求点P到点C的最短距离.
阿基米德折弦定理:如图①,AB和BC是⊙O的两条弦(即折线AB-BC是圆的一条折弦),BC> AB,点M是的中点,则从点M向BC作垂线,垂足D是折弦ABC的中点,即CD=DB+BA.
下面是运用“截长法”证明CD=DB+BA的部分证明过程.
证明:如图②,在CD上截取CE=AB,连接MA、MB、MC和ME.
∵M是的中点,∴MA=MC.
……
请按照上面的证明思路,写出该证明的剩余部分.
如图③,△ABC内接于⊙O,过点O作OD⊥AB于点D,延长DO交⊙O于点E,过点E作EF⊥AC于点F.若AC=10,BC=4,则CF的长为
如图④,等边△ABC内接于⊙O,点D是上一点,且∠ABD= 45°,连接CD.若AB=2,则△BDC的周长为