0
返回出卷网首页
1. 如图1,我们把一个半圆和抛物线的一部分围成的封闭图形称为“果圆” ,已知A,B,C,D分别为“果圆”与坐标轴的交点,y=
x-3与“果圆” 中的抛物线y=
+bx+c交于B,C两点.
(1)
求“果圆”中的抛物线的解析式,并直接写出“果圆”被y轴截得的线段BD的长.
(2)
“果圆”上是否存在点P使∠APC=∠CAB?如果存在请求出点P的坐标;如果不存在,请说明理由.
(3)
如图2,E为直线BC下方“果圆”上一点,连接AE,AB,BE,设AE与BC交于F,△BEF的面积记为S
△
BEF
, △ABF的面积记为S
△
ABF
, 求
的最小值.
【考点】
相似三角形的判定与性质; 二次函数的实际应用-几何问题;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
解答题
困难
能力提升
真题演练
换一批
1. 如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小明在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己得影长FG=4m,如果小明的身高为1.6m,求路灯杆AB的高度.
解答题
普通
2. 如图,D是△ABC的边AC上的一点,连接BD,已知∠ABD=∠C,AB=6,AD=4,求线段CD的长.
解答题
普通
3. 如图,CA⊥AD,ED⊥AD,B是线段AD上的一点,且CB⊥BE.已知AB=8,AC=6,DE=4.
(1)
求证:△ABC∽△DEB.
(2)
求线段BD的长.
解答题
普通
1. 如图,已知二次函数
的图象经过点A(4,0),与y轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.
(1)
求a的值和直线AB的解析式;
(2)
过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S
1
, S
2
, 若S
1
=4S
2
, 求m的值;
(3)
点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱
周长取最大值时,求点G的坐标.
综合题
困难
2. 如图,抛物线y=ax
2
+bx+2与x轴交于A,B两点,且OA=2OB,与y轴交于点C,连接BC,抛物线对称轴为直线x=
,D为第一象限内抛物线上一动点,过点D作DE⊥OA于点E,与AC交于点F,设点D的横坐标为m.
(1)
求抛物线的表达式;
(2)
当线段DF的长度最大时,求D点的坐标;
(3)
抛物线上是否存在点D,使得以点O,D,E为顶点的三角形与
相似?若存在,求出m的值;若不存在,请说明理由.
综合题
困难
3. 如图,抛物线y=ax
2
+bx+c交x轴于A(-1,0),B两点,交y轴于点C(0,3),顶点D的横坐标为1.
(1)
求抛物线的解析式;
(2)
在y轴的负半轴上是否存在点P使∠APB+∠ACB=180°.若存在,求出点P的坐标,若不存在,请说明理由;
(3)
过点C作直线l与y轴垂直,与抛物线的另一个交点为E,连接AD,AE,DE,在直线l下方的抛物线上是否存在一点M,过点M作MF⊥l,垂足为F,使以M,F,E三点为顶点的三角形与ΔADE相似?若存在,请求出M点的坐标,若不存在,请说明理由.
综合题
困难