1.     
(1) 知识储备

①如图 1,已知点 P 为等边△ABC 外接圆的弧BC 上任意一点.求证:PB+PC= PA.

②定义:在△ABC 所在平面上存在一点 P,使它到三角形三顶点的距离之和最小,则称点 P 为△ABC的费马点,此时 PA+PB+PC 的值为△ABC 的费马距离.

(2) 知识迁移

①我们有如下探寻△ABC (其中∠A,∠B,∠C 均小于 120°)的费马点和费马距离的方法:

如图 2,在△ABC 的外部以 BC 为边长作等边△BCD 及其外接圆,根据(1)的结论,易知线段的长度即为△ABC 的费马距离.

②在图 3 中,用不同于图 2 的方法作出△ABC 的费马点 P(要求尺规作图).

(3) 知识应用

①判断题:

ⅰ.任意三角形的费马点有且只有一个();

ⅱ.任意三角形的费马点一定在三角形的内部().

②已知正方形 ABCD,P 是正方形内部一点,且 PA+PB+PC 的最小值为 ,求正方形 ABCD 的边长.

【考点】
圆的综合题;
【答案】

您现在未登录,无法查看试题答案与解析。 登录
综合题 普通