问题背景:数学学习中,常常会将新研究的问题转化为以前研究过的熟悉的问题,转化是解决数学问题的一种重要策略.接下来,我们用转化来解决一个有意思的问题.
问题提出:一根绳子,随机分成三段,它们能构成三角形概率是多少?
理解问题:三条线段构成三角形的条件是什么?两边之和大于第三边,两边之差小于第三边.假设绳子长度为1,方程的三段分别是 , , . 根据三角形的相关知识,需要符合以下条件: , , , 等等.严格来说这是一个多元的不等式组,我们并没学过.但是这里有等式,可以通过“代入消元”的办法得到一些范围.如,将 , 代入 , 这就是一个一元一次不等式,可以得到的取值范围是 .
解决问题:
①同理可得,的取值范围是 ▲ , 的取值范围是 ▲ .
②如图1,是一个高为1的等边三角形.在等边三角形内任意取一点 , 连接 , , , 把等边三角形分成了三个小三角形,如图2,可以发现, , , 与存在数量关系: , 请给出证明.
如图,▱ABCD的对角线AC、BD相交于点O,EF、GH过点O,且点E、H在边AB上,点G、F在边CD上,向▱ABCD内部投掷飞镖(每次均落在▱ABCD内,且落在▱ABCD内任何一点的机会均等)恰好落在阴影区域的概率为( )