0
返回出卷网首页
1. 如图,抛物线
经过坐标原点
, 且顶点为
.
(1)
求抛物线的表达式;
(2)
设抛物线与
轴正半轴的交点为
, 点
位于抛物线上且在
轴下方,连接
、
, 若
, 求点
的坐标.
【考点】
待定系数法求二次函数解析式; 二次函数-动态几何问题; 二次函数y=ax²+bx+c的图象; 二次函数y=ax²+bx+c的性质;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
解答题
普通
能力提升
换一批
1. 如图,在平面直角坐标系中,抛物线
y
=
x
2
+
mx
+
n
经过点
A
(3,0)、
B
(0,-3),点
P
是直线
AB
上的动点,过点
P
作
x
轴的垂线交抛物线于点
M
, 设点
P
的横坐标为
t
.
(1)
分别求出直线
AB
和这条抛物线的解析式.
(2)
若点
P
在第四象限,连接
AM
、
BM
, 当线段
PM
最长时,求△
ABM
的面积.
(3)
是否存在这样的点
P
, 使得以点
P
、
M
、
B
、
O
为顶点的四边形为平行四边形?若存在,请直接写出点
P
的横坐标;若不存在,请说明理由.
解答题
困难
2. 已知二次函数y=x
2
+bx+c
b,c为常数)的图象经过A(m,p),B(m+1,q)两点.
(1)
已知
, 求该二次函数的表达式.
(2)
当该二次函数图象经过点
时.
①求该二次函数图象的对称轴和最小值(用含
的代数式表示);
②若
, 求
的取值范围.
解答题
普通
3. 设二次函数
是实数
. 已知函数值
和自变量
的部分对应取值如下表所示:
-1
0
1
2
3
1
1
(1)
若
.
①求二次函数的表达式.
②写出一个符合条件的
的取值范围,使得
随
的增大而减小.
(2)
若在
这三个实数中, 只有一个是正数,求
的取值范围.
解答题
普通