0
返回出卷网首页
1. 已知平行四边形ABCD.
(1)
如图1,将▱ABCD绕点D逆时针旋转一定角度得到▱A
1
B
1
C
1
D,延长B
1
C
1
, 分别与BC、AD的延长线交于点M、N.
①求证:∠BMB
1
=∠ADA
1
;
②求证:B
1
N=AN+C
1
M;
(2)
如图2,将线段AD绕点D逆时针旋转,使点A的对应点A
1
落在BC上,将线段CD绕点D逆时针旋转到C
1
D的位置,AC
1
与A
1
D交于点H.若H为AC
1
的中点,∠ADC
1
+∠A
1
DC=180°,A
1
B=nA
1
C,试用含n的式子表示
的值.
【考点】
全等三角形的判定与性质; 平行四边形的性质; 旋转的性质; 三角形的中位线定理;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
综合题
困难
能力提升
换一批
1. 如图,平行四边形
中,
是对角线
的中点,过点
的直线
分别交
,
的延长线于
,
.
(1)
求证:
;
(2)
若
,试探究线段
与线段
之间的关系,并说明理由.
综合题
普通
2. 如图,平行四边形ABCD中,O是对角线BD的中点,过点O的直线EF分别交DA,BC的延长线于E,F.
(1)
求证:AE=CF;
(2)
若AE=BC,试探究线段OC与线段DF之间的关系,并说明理由.
综合题
普通
3. 如图1,在△ABC中,AB=AC,∠BAC=α,点D、E分别在边AB、AC上,AD=AE,连接DC,点F、P、G分别为DE、DC、BC的中点.
(1)
观察猜想:图1中,线段PF与PG的数量关系是
,∠FPG=
(用含α的代数式表示)
(2)
探究证明:当△ADE绕点A旋转到如图2所示的位置时,小新猜想(1)中的结论仍然成立,请你证明小新的猜想.
(3)
拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=2,AB=6,请直接写出PF的最大值.
综合题
困难