0
返回出卷网首页
1. △ABC是一张等腰直角三角形纸板,∠C=90°,AC=BC=2,
(1)
要在这张纸板中剪出一个尽可能大的正方形,有甲、乙两种剪法(如图1),比较甲、乙两种剪法,哪种剪法所得的正方形面积大?请说明理由.
(2)
图1中甲种剪法称为第1次剪取,记所得正方形面积为s
1
;按照甲种剪法,在余下的△ADE和△BDF中,分别剪取正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为s
2
(如图2),则s
2
=
;再在余下的四个三角形中,用同样方法分别剪取正方形,得到四个相同的正方形,称为第3次剪取,并记这四个正方形面积和为s
3
, 继续操作下去…,则第10次剪取时,s
10
=
;
(3)
求第10次剪取后,余下的所有小三角形的面积之和.
【考点】
勾股定理; 正方形的性质; 等腰直角三角形;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
综合题
普通
能力提升
真题演练
换一批
1. 勾股定理是数学史上非常重要的一个定理.早在2000多年以前,人们就开始对它进行研究,至今已有几百种证明方法.在欧几里得编的《原本》中证明勾股定理的方法如下,请同学们仔细阅读并解答相关问题:如图;分别以Rt△ABC的三边为边长,向外作正方形ABDE、BCFG、ACHI.
(1)
设正方形ABDE的面积为
, 正方形BCFG的面积为
, 正方形ACHI的面积为
, 证明
;
(2)
连接BI、CE,求证:EC=BI;
(3)
过点B作AC的垂线,交AC于点M,交IH于点N.试说明四边形AMNI与正方形ABDE的面积相等.
综合题
普通
2. 小平所在的学习小组发现,车辆转弯时,能否顺利通过直角弯道的标准是,车辆是否可以行驶到和路的边界夹角是45°的位置(如图1中②的位置).例如,图2是某巷子的俯视图,巷子路面宽4m,转弯处为直角,车辆的车身为矩形ABCD,CD与DE、CE的夹角都是45°时,连接EF,交CD于点G,若GF的长度至少能达到车身宽度,即车辆能通过.
(1)
小平认为长8m,宽3m的消防车不能通过该直角转弯,请你帮他说明理由;
(2)
小平提出将拐弯处改为圆弧(
和
是以O为圆心,分别以OM和ON为半径的弧),长8m,宽3m的消防车就可以通过该弯道了,具体的方案如图3,其中OM⊥OM′,你能帮小平算出,ON至少为多少时,这种消防车可以通过该巷子?
综合题
困难
3. 如图1,用平面去截一个正方体,得到了一个如图2的几何体,通过测量得到
,
.
(参考数据:
,
,
)
(1)
若
,则
的长为
;
(2)
若
,求
的长.
综合题
普通
1. 如图,正方形
的边长为
, 将正方形
绕原点O顺时针旋转45°,则点B的对应点
的坐标为( )
A.
B.
C.
D.
单选题
普通
2. 已知正方形
,
,
为平面内两点.
(1)
(探究建模)
如图1,当点
在边
上时,
,且
,
,
三点共线.求证:
;
(2)
(类比应用)
如图2,当点
在正方形
外部时,
,
,且
,
,
三点共线.猜想并证明线段
,
,
之间的数量关系;
(3)
(拓展迁移)
如图3,当点
在正方形
外部时,
,
,
,且
,
,
三点共线,
与
交于
点.若
,
,求
的长.
综合题
困难
3. 已知四边形
是边长为1的正方形,点E是射线
上的动点,以
为直角边在直线
的上方作等腰直角三角形
,
,设
.
(1)
如图1,若点E在线段
上运动,
交
于点P,
交
于点Q,连结
,
①当
时,求线段
的长;
②在
中,设边
上的高为h,请用含m的代数式表示h,并求h的最大值;
(2)
设过
的中点且垂直于
的直线被等腰直角三角形
截得的线段长为y,请直接写出y与m的关系式.
综合题
困难